
Learning Multi-Class Segmentations From Single-Class Datasets
Konstantin Dmitriev and Arie E. Kaufman 
Stony Brook University

Introduction
Publicly available large-scale datasets of natural scenes and common 
objects, like ImageNet, COCO or Pascal VOC, not only provide the means 
to develop and evaluate different models but also include diverse multi-label 
annotations. However, some domains require experts to generate the 
ground truth annotations, which makes the process costly and leads to 
datasets having binary annotations for a specific class.

While often diverse, the images in these datasets do not overlap. Thus, they 
cannot be simply combined to train a multi-class model. 

Develop separate models for each class

This approach leads to inefficient usage of computational resources.
Find multi-class datasets

Depending on the domain, such datasets 
are often small and publicly unavailable, 
and the images lack diversity.

This approach assumes the availability of weak annotations for every object  
of the target classes.

Traditional solutions
Use weakly-labeled dataset
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Our solution
We propose an efficient framework of conditioning a single model for the multi-class 
segmentation using non-overlapping single-class datasets.

Which part of the model is the best to condition?

Function    creates a conditional 
tensor with all values set to hash(cm)

ϕ(cm, Hj,Wj, Dj) = O
Hj×Wj×Dj ⊙ hash(cm)
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ϕ(cm, Hj,Wj, Dj) = O
Hj×Wj×Dj ⊙ hash(cm)
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cond: decoder

cond: encoder

cond: 2nd channel

Our approach allows the model to share 
implicitly all of its parameters by all target 
classes, which drastically reduces the 
complexity and the total number of 
parameters and improves the performance 
in comparison to separate class-specific 
models.

Results (cond: decoder)
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L(Y, Ŷ ) = α1β1L1(Y
c1 , Ŷ c1) + ...+ αnβkLk(Y

cm , Ŷ cm)


