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Abstract

Multi-class segmentation has recently achieved signif-

icant performance in natural images and videos. This

achievement is due primarily to the public availability of

large multi-class datasets. However, there are certain do-

mains, such as biomedical images, where obtaining suffi-

cient multi-class annotations is a laborious and often im-

possible task and only single-class datasets are available.

While existing segmentation research in such domains use

private multi-class datasets or focus on single-class seg-

mentations, we propose a unified highly efficient frame-

work for robust simultaneous learning of multi-class seg-

mentations by combining single-class datasets and utilizing

a novel way of conditioning a convolutional network for the

purpose of segmentation. We demonstrate various ways of

incorporating the conditional information, perform an ex-

tensive evaluation, and show compelling multi-class seg-

mentation performance on biomedical images, which out-

performs current state-of-the-art solutions (up to 2.7 %).

Unlike current solutions, which are meticulously tailored

for particular single-class datasets, we utilize datasets from

a variety of sources. Furthermore, we show the applicabil-

ity of our method also to natural images and evaluate it on

the Cityscapes dataset. We further discuss other possible

applications of our proposed framework.

1. Introduction
Tremendous progress has been made in deep learning for

semantic segmentation, and one of the major factors of such
advances is the public availability of large-scale multi-class
datasets, such as ImageNet [7], COCO [24], PASCAL
VOC [12], and others. Such variety of available datasets
not only provides the means to train and evaluate differ-
ent segmentation models but also to exhibit diverse labels.
However, in contrast to natural images, there are certain do-
mains, where despite the critical importance of segmenta-
tion research, the generation of ground truth annotations
and labeling is extremely costly and remains a bottleneck
in advancing research.

Biomedical images is one such domain where the ac-
curate segmentation of various structures is a fundamen-
tal problem, especially in clinical research. In traditional
clinical practice, segmentation is often omitted during the
diagnostic process. However, manual analysis of biomed-
ical images, including measurements, is subject to large
variability, as it depends on different factors, including the
structure of interest, image quality, and the clinician’s expe-
rience. Moreover, segmentation is an essential component
in various medical systems that support computer-aided di-
agnosis (CAD) [9, 14] and surgery and treatment planning.
Furthermore, early cancer detection and staging often de-
pend on the results of segmentation.

Remarkable progress has been made in the segmentation
of radiological images, such as magnetic resonance imag-
ing (MRI) and computed tomography (CT) 3D scans. Radi-
ological images exhibit various objects, such as abdominal
organs (Fig. 1a), within a single image. However, creat-
ing expert annotations for such images is a time consum-
ing and intensive task, and thus multi-class datasets are dif-
ficult to generate. A limited number of segmentation al-
gorithms have been proposed and evaluated on multi-class
datasets. These include private or public datasets, such as
VISCERAL [20], which has been unavailable due to a lack
of funding. Apart from often being private, these multi-
class datasets are frequently limited in size (less than 30
volumes) and come from a single institution, where they
were generated using the same imaging protocols and imag-
ing devices, leading to the developed segmentation algo-
rithms being sensitive to such imaging parameters. On the
other hand, generation of single-class datasets requires less
time and effort, and they are often publicly available as part
of challenges, such as, Sliver07 [15] (Fig. 1b) and NIH
Pancreas [16] (Fig. 1c). Additionally, these single-class
datasets come from different institutions and exhibit vari-
ability in factors, such as the presence of malignancy, imag-
ing protocols, and reconstruction algorithms.

However, while single-class datasets often contain the
same objects within a single image, the ground truth anno-
tations are provided for only a particular class of objects
in the form of binary masks, and the sets of images from
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Figure 1: Single-class datasets can be found in various domains, including biomedical images, such as CT scans. While
various organs can be seen on a single CT scan (a), the manual generation of the outlines of each organ is an intensive, as
often only clinicians can analyze such images, and a time-consuming task, which leads to the lack of comprehensive multi-
class datasets. Several single-class datasets have been provided as parts of challenges: (b) a dataset of liver segmentations
(Sliver07) [15], (c) a dataset of pancreas segmentations (NIH Pancreas) [16]; while some remain private due to the ethical
or legal aspects: (d) a dataset of liver and spleen segmentations. While being the same in nature, the sets of images in these
datasets do not overlap, which complicates their simultaneous use for training.

different datasets do not overlap. Thus, it is obstructive
to simply combine the datasets to train a single model for
multi-class segmentation. Classically, single-class datasets
have been used to develop highly tailored solutions for the
segmentation of particular classes. In this paper, we intro-
duce a novel and efficient way of training and conditioning
a single convolutional network (convnet) for the purpose
of multi-class segmentation using non-overlapping single-
class datasets for training. Our approach allows the model
to share implicitly all of its parameters by all target classes
being modeled. This drives the model to effectively learn
the spatial connections between objects of different classes
and improve its generalization ability.

To the best of our knowledge, our work is the first to
describe the use of conditioning a convnet for the pur-
pose of segmentation and to demonstrate the possibility of
producing multi-class segmentations using a single model
trained on non-overlapping single-class datasets. The con-
tributions of our work are: (1) the first application, to the
best of our knowledge, of conditioning a convnet for se-
mantic segmentation; (2) the presented conditioning frame-
work enables an efficient multi-class segmentation with a
single model trained on single-class datasets, drastically re-
ducing the training complexity and the total number of pa-
rameters, in comparison to separate class-specific models;
(3) improved state-of-the-art results (up to 2.7%) on pub-
licly available datasets for the segmentation of liver, spleen,
and pancreas with significantly reduced computational cost.
Moreover, we demonstrate the applicability of our proposed
method to natural images and evaluate it on the Cityscapes
dataset [5]. Additionally, we discuss the possible extensions
and applications of the proposed approach.

2. Related work
The difficulty of collecting large-scale, carefully anno-

tated datasets for semantic segmentation is well acknowl-

edged [37, 39, 46]. A family of approaches has been pro-
posed for learning to perform segmentation using weakly
labeled data. Weak annotations, in the form of image labels
[22], points and scribbles [1, 18], bounding boxes [6], and
their combinations [30, 41] have been explored for learning
image segmentation models. While these works in weakly-
supervised segmentation are similar in spirit, they are prin-
cipally different in comparison to our work. They still as-
sume the availability of annotations of every object from a
collection of pre-defined target classes if one is present in an
image. With regard to CT images, each slice would require
a set of annotations for every target organ present on a slice,
be it seeds, bounding boxes or labels. However, single-class
datasets do not come with such annotations, and provide de-
tails for only one particular class.

Segmentation of anatomical structures, especially ab-
dominal organs, is considered a difficult problem, as they
demonstrate a high variability in size, position, and shape
(Fig. 1). Various convnet-based segmentation methods have
been proposed for abdominal organ segmentation. The ma-
jority of these methods that utilize single-class datasets are
specialized on the segmentation of a particular organ, such
as liver [10, 25] or pancreas [13, 34]. Moreover, these
works often describe sophisticated and intricate multi-stage
approaches [45]. Some more generally applicable convnet-
based methods have been proposed and tested on multi-
ple organs [11]. These methods describe models for the
segmentation of individual organs, and the separate seg-
mentations are fused together to produce the final outlines.
However, while showing state-of-the-art performance, these
models must be trained and applied separately for the seg-
mentation of each organ, which manifests inefficient us-
age of computational resources and additional training time.
Moreover, such separately trained models do not embed
the spatial correlations among abdominal organs and thus
are likely to be overfitted for each particular single-class



dataset. Additionally, these models often also require pre-
and post-processing steps, which complicate and particular-
ize the models even more.

Several studies have been proposed for the simultane-
ous multi-class, or multi-organ, segmentation of anatomical
structures in medical images. The majority of these utilize
probabilistic atlases [4, 29, 40] and statistical shape models
[28]. These methods require all volumetric images in the
training dataset to be registered. This pre-processing step
is computationally expensive and often imperfect due to the
considerable variations in size, shape, and location of ab-
dominal organs between patients. Recently, a few convnet-
based solutions [35] were proposed for simultaneous multi-
organ segmentation. However, all such methods were devel-
oped and evaluated on publicly unavailable multi-class seg-
mentation datasets. Moreover, the used multi-class datasets
were acquired by a single institution and exhibit the same
image quality and lack chronic abnormalities. In contrast,
we leverage diverse single-class datasets and describe a
novel way of conditioning a convnet to develop a multi-
class segmentation model of high generalization ability.

Conditioning has been widely used in image synthesis.
A family of works [23, 38, 42, 43] on generating images
conditioned on certain attributes, such as category or la-
bels, have shown successful and compelling results. Ma et

al. [26] proposed a framework for person image synthesis
based in arbitrary poses. Zhu et al. [49] modeled a distribu-
tion of potential results of the image-to-image translation.
Reed et al. [32] demonstrated the synthesis of images given
the desired content and its location within the image. How-
ever, the area of conditional convnets for semantic segmen-
tation has been left untapped, and no application has been
explored. In this paper, we describe a method of condition-
ing a convnet for the purpose of segmentation, evaluate the
method on the segmentation of abdominal organs and urban
scenes, and discuss a set of other possible applications.

3. Method
As opposed to generating separate models for each ob-

ject in single-class datasets, we describe a framework that
can simultaneously learn multi-class knowledge given a
set of single-class datasets. Consider a set of single-
class datasets {D1, ...,DK}, where each dataset Dk =
{(Xk;Y k,cm)}, k 2 {1, ...,K} contains a set of input im-
ages X

k = {xk

i
} and a set of corresponding binary seg-

mentation masks Y k,cm = {yk,cm
i

} of object cm 2 C,m =
1, ...,M . Additionally, input images X

k in each dataset
Dk exhibit objects of all classes cm 2 C. Moreover, we
also assume that datasets Dk do not have the same pairs
of {(Xk;Y k,cm)}, such as Di \ Dj = ;, 8i, j, and each
dataset might have different number of classes. These as-
sumptions greatly relax the initial conditions and attempt to
make the description of the problem more general and chal-

lenging. The goal is to predict a set of segmentation masks
{ŷcm}, 8cm 2 C, given an unseen input image x̂.

3.1. Base model
The base component of the proposed framework is a

3D fully-convolutional U-net-like architecture, such as an
encoder-decoder with skip connections (Fig. 2a). Addition-
ally, we adopt 3D densely connected convolutional blocks
[17, 19], which effectively utilize the volumetric informa-
tion available in the CT scans. More formally, the model
includes densely-connected units of a composite function
Fl(·), and the output xl of the l

th layer is defined as

xl = Fl([x0,x1, ...,xl�1]), (1)

where [...] is a concatenation operation of the feature maps
from previous layers. In our experiments, Fl(·) is defined
as a leaky rectified linear unit (LReLU [27]) with ↵ = 0.3,
followed by a 3 ⇥ 3 ⇥ 3 convolution. The encoder part of
the model includes a convolutional layer, followed by six
densely connected convolutional blocks, sequentially con-
nected via 2 ⇥ 2 ⇥ 2 maxpooling layers. The number of
feature channels in each dense block is proportional to its
depth. The decoder part of the model utilizes transposed
convolutions with strides as upsampling layers and is topo-
logically symmetric to the encoder. The last convolutional
layer ends with a sigmoid function. See the supplementary
material for more details.

3.2. Conditioning
Unlike classic approaches of training separate models for

each class cm 2 C, our framework is able to infer the seg-
mentations and the relationships of multiple classes from
single-class datasets and to learn to generate segmentations
for all classes cm with a single model. To introduce such
ability to the model, we propose a novel way of condition-
ing the base convolutional model with a target class cm that
needs to be segmented. While certain ways of condition-
ing have been widely used in generative adversarial nets
(GANs) [8, 26, 32] for image synthesis, to the best of our
knowledge, there have been no attempts to condition a con-
vnet for segmentation.

One of our goals was to keep the base model fully-
convolutional, simple, and efficient in order to avoid ad-
ditional overhead that could negatively affect the perfor-
mance. To achieve this, we propose to incorporate the con-
ditional information as a part of the intermediate activation
signal after performing convolutional operations and before
applying nonlinearities. While some examples of condi-
tioned GANs [32] suggest to learn the conditional func-
tion, we propose a more computationally efficient approach
for the task of segmentation. Specifically, we propose to use
the following function:

'(cm, Hj ,Wj , Dj) = O
Hj⇥Wj⇥Dj � hash(cm), (2)
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Figure 2: A schematic overview of the proposed framework for conditioning a convnet to perform multi-class segmentation
using only single-class datasets during training. (a) The base model uses images from the k single-class datasets and after
conditioning on class labels, produces the final segmentation masks. The conditioning can be done for either (b) encoder or
(c) decoder layers of the base model, or both.

where � is an element-wise multiplication, OHj⇥Wj⇥Dj

is a tensor of size Hj ⇥ Wj ⇥ Dj with all elements set to
1, and hash(·) is a hash function for a pre-defined lookup
table. That is, the function '(cm, Hj ,Wj , Dj) creates a
tensor of size Hj⇥Wj⇥Dj with all values set to hash(cm).
Therefore, the proposed conditioning of the l

th layer with
input xl of size Hl ⇥Wl ⇥Dl is defined as

xl = [xl�1,'(cm, Hl,Wl, Dl)] (3)

where xl�1 is the output of the previous layer (Fig. 2b, 2c).
It is important to note that the proposed conditioning does
not depend on the possible attributes of the classes, such as
location, shape, etc. It is done to increase the generalization
ability of the proposed framework.

During training time, the network is trained on pairs
(xk

i
; yk,cm

i
) that are randomly sampled from different

datasets Dk, while being conditioned on the correspond-
ing class cm of the binary ground truth segmentation mask
y
k,cm
i

. During the inference time, the network is sequen-
tially conditioned on all cm 2 C to generate segmentations
masks {ŷcm} for all objects in the input image x̂. While
such an approach of using a pre-defined lookup table main-
tains the simplicity and austerity of the framework without
additional variables to be trained, it also has some practical
benefits. In particular, in the event of adding a new target
segmentation class cM+1, the framework will only require
a new entry to the lookup table and a simple fine-tuning,
unlike the more expensive re-training expected if we had
learned the conditional function.

However, a natural question arises: given a deep convnet
with L layers, where is the best place to perform the con-
ditioning? Conditioning of which layers is the most benefi-
cial? We hypothesize that given an encoder-decoder like ar-
chitecture, one should expect better performance when the

conditioning is done on the layers in the decoder, which
could use the provided conditional information and the low-
level information present in the encoder feature maps to
map them to higher levels within the network. Moreover,
we expect that the conditional information directly accessi-
ble to multiple layers will make the optimization easier. In
Section 4.1, we test our hypothesis and report the perfor-
mance for a variety of conditioning settings.

4. Experiments
In this section, we describe an extensive analysis of our

framework, experiment with different kinds of loss func-
tions and various ways of conditioning, and compare the re-
sults to the solutions, which were individually customized
for each single-class dataset or designed for multi-class
datasets. We show that our conditioned multi-class seg-
mentation framework outperforms current state-of-the-art
single-class segmentation approaches for biomedical im-
ages. Additionally, we demonstrate the applicability of the
proposed approach for the segmentation of urban scenes.

Datasets To evaluate the proposed framework and to
test our hypotheses, our work utilizes three datasets of ab-
dominal CT volumes. Particularly, we use 20 volumes of
the publicly available Sliver07 dataset [15] of liver seg-
mentations, 82 volumes of the publicly available NIH Pan-
creas dataset [16] of pancreas segmentations, and 74 vol-
umes from our additional dataset of liver and spleen seg-
mentations. Therefore, in our experiments, cm 2 C =
{liver, spleen, pancreas}. The segmentation masks in the
latter dataset have been binarized and stored as separate
single-class files. Examples of the CT images and the cor-
responding ground-truth segmentation masks are illustrated
in Fig. 1b, 1c, 1d and Fig. 6 (first column). Following a



common strategy, each dataset was divided into training and
testing sets with ratio of 80/20. The size of the volumes in
each dataset was 512⇥512⇥Z0, where Z0 is the number of
axial slices. Each dataset was collected at different institu-
tions with different scanners and protocols and incorporates
volumes of various inter-slice spacings and, moreover, ex-
hibits various pathologies, such as hepatic tumors and cases
of splenomegaly. Such diversity in the datasets allows us to
test the proposed approach in a challenging setting.

The input images have been minimally preprocessed:
each dataset was sampled with an equal probability, and
subvolumes of size 256⇥256⇥32 have been extracted and
normalized to create input images. Additionally, all train-
ing examples have been augmented with small random ro-
tations, zooms, and shifts.

Training The proposed framework was trained on exam-
ples from all used single-class datasets. The framework was
optimized with the following objective:

L(Y , Ŷ ) = ↵1�1L1(Y
c1 , Ŷ

c1)+...+↵n�kLk(Y
cm , Ŷ

cm),
(4)

where Li(Y ci , Ŷ
ci) is a loss function for a single-class

dataset Di, the hyperparameters ↵i specify the impact of
a particular class ci on the total loss, and �i = {0, 1} speci-
fies the presence of the binary mask for class ci in the batch.

Inference During the inference time, one can manually
specify the target segmentation class ci. However, to sim-
plify the use of the framework during the inference time, we
suggest to automate the process of specifying the target seg-
mentation class by iteratively going through all the entities
in the lookup table. Alternatively, specifically for segmen-
tation of abdominal organs, a set of presets can be defined,
such as liver and gallbladder, which are often analyzed to-
gether by clinicians.

Implementation The proposed framework was imple-
mented using Keras library with TensorFlow backend. We
trained our network from scratch using Adam optimizer
[21] with the initial learning rate or 0.00005, and �1 =
0.9,�2 = 0.999, with a batch size of 2 for 25K iterations.

4.1. Ablation experiments
The predicted segmentation masks are binarized by

thresholding them at 0.5. To measure the similarity between
binary segmentation masks Y and Ŷ , we use the common
Dice Similarity Coefficient (DSC) metric, which is defined
as DSC(Y, Ŷ ) = 2

P
Y�ŶP

Y+
P

Ŷ
. We compare our results

against the current state-of-the-art segmentation methods,
which are proposed specifically for single-class segmenta-
tion and are tailored for a particular class. In particular,
we compare against the work by Zhou et al. [48], which
described a two-step coarse-to-fine convnet-based solution
for pancreas segmentation, and yielded 82.4% DSC on the
NIH Pancreas [16] dataset. We also compare against an-

other convnet-based segmentation work by Yang et al. [44],
which showed 95% DSC on a private datasets of 1000 CT
images of liver. Finally, we compare our results against
the two-stage coarse-to-fine multi-organ convnet-based so-
lution by Roth et al. [35], which was evaluated on a pri-
vate multi-class dataset and resulted in 95.4%, 92.8%, and
82.2% DSC for liver, spleen, and pancreas, respectively.

In all experiments described in this section we set ↵i = 1
and use the DSC-based loss function:

Li(Y
ci , Ŷ

ci) = 1� 2
P

Y
ci � Ŷ

ci

P
Y ci +

P
Ŷ ci

. (5)

Additionally, we experimented with the binary cross-
entropy loss function, which showed significantly worse
performance.

We begin our experiments by analyzing the performance
of our base model trained separately for each class cm with-
out the use of conditioning. We refer to this experiment as
indivs and the learning curves for each model are illus-
trated in Fig. 3a. We observe that the models failed to get
close to the state-of-the-art performance during the first 25K
iterations.

Next, we test a naive approach of training a single model
on single-class datasets to produce reasonable multi-class
segmentation results by predicting a volume of the same di-
mensions but with three additional channels, each for each
class cm, such as liver, spleen, and pancreas. We refer to
this experiment as no cond and the learning curves are il-
lustrated in Fig. 3b. The results show that the training does
not converge, which was expected and can be explained
by the fact that the model struggles to infer multi-class
segmentations from the inconsistent binary masks in the
training examples. Additionally, this approach is memory-
bounded, especially for high-resolution images and vol-
umes, and only a small number of classes can be modeled
this way. The examples of the segmentations produced by
the no cond model can be found in the Appendix.

The next experiments describe the results of the condi-
tioned model. In the experiment cond-2nd, we test a sim-
ple way of conditioning a model by providing the condi-
tional information as the second channel of the input vol-
ume. Particularly, we predefine a lookup table of condition-
ing variables for each cm with random real values sampled
from [-1, 1]. Specifically, each training 3D subvolume has
been augmented in the second channel with a volume of the
same size with all elements set to hash(cm). The learning
curves illustrated in Fig. 3c show that the model was able
to utilize the provided conditional information and learn to
generate multi-class segmentations. However, similarly to
the experiment cond-enc (see Fig. 3d), where each dense
block in the encoder had direct access to the conditional
information, the model shows adequate performance but
struggles to outperform state-of-the-art approaches. How-
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Figure 3: Training curves of various conditioning models generated for each cm 2 C = liver, spleen, pancreas during the
first 25K iterations (x-axis). The dashed green line denotes training accuracy (DSC, %) (y-axis), the solid orange line denotes
testing accuracy, and the solid red line denotes the current state-of-the-art results.

ever, we notice significantly better generalization perfor-
mance in these models trained jointly on different datasets
while improving training and testing accuracies, compared
to indivs models trained separately on each dataset.

Finally, we experiment with conditioning the decoder
part of the base model. We refer to this experiment as
cond-dec. The learning curves illustrated in Fig. 3e val-
idate our hypothesis and show a superior segmentation per-
formance. The training in this experiment converges faster
than in the other experiments. In addition to outperform-
ing both meticulously tailored solutions for single-class seg-
mentation and multi-class segmentation solutions designed
on private datasets (see Table 1), our framework also shows
significant generalization ability. Examples of the segmen-
tation results for this experiment are illustrated in Fig. 6.
We observe that the model accurately delineates all the tar-
get objects even in a difficult case illustrated in Fig. 6 (last
row), where due to the imaging protocol all of the organs,
besides being congested together, also have similar intensi-
ties and their boundaries are hard to differentiate. The rea-
son for such accurate segmentations by this model can be
due to (1) a high degree of implicit parameter sharing be-
tween all classes being modeled, and (2) the ability of the
decoder path to capitalize on the available conditional in-
formation and gradually recover the spatial information and
sharp boundaries of the target classes.

We also performed additional experiments on condition-
ing the decoder and encoder at the same time and studied
the effects of conditioning only parts of the decoder at var-
ious depths. Such approaches yielded no benefits, and the
performance in these experiments was inferior compared to
when the conditional information was available directly to
each layer in the decoder.

Importance of spatial connections between classes To
test our hypothesis and to explore the importance of the
spatial correlation between classes on the model’s perfor-
mance, we evaluate our cond-decmodel on corrupted im-
ages. For CT images in particular, we compare the baseline
performance (Table 1) to the performance on images where
different classes were corrupted by randomly replacing 70%
of the corresponding voxels with intensity values common
for fatty tissue between organs. An example of a corrupted
image for spleen is illustrated in Fig. 4. Interestingly, the
separate corruption of classes spleen and pancreas had
practically no effect on the accuracy of the liver segmenta-
tion, which only degraded within the 2% range. However,
both the segmentations of spleen and pancreas were sig-
nificantly affected when other organs were corrupted, drop-
ping the performance on average by 15.3% compared to the
baseline. We believe this supports our hypothesis that the
model learns and utilizes the spatial correlations between
target classes during the inference, and the deprivation of
these correlations degrades the performance.

Applicability to natural images The described condi-
tioning technique was developed with the goal of being uni-
versally applicable rather than being limited to medical im-
ages. To demonstrate the applicability of our method to
other domains, we train a model for semantic segmenta-
tion of natural images. While datasets of natural images are
generally multi-class – i.e., multiple objects in an image are
annotated – we believe the validation of our framework on
natural images datasets is valuable. We evaluate our method
using the challenging urban scene understanding dataset
Cityscapes [5]. It contains 2,975 finely-annotated training,
500 validation, and 1,525 test images of 1024 ⇥ 2048 res-
olution with 19 semantic classes. Additionally, the dataset



Figure 4: An example of a corrupted image, where 70% of
spleen voxels were replaced with intensity values common
for fatty tissue between organs.

Table 1: The comparison of segmentation accuracy (mean
DSC, %) for different models for the segmentation of liver,
spleen, and pancreas (higher is better).

Model Liver Spleen Pancreas

Yang et al. [44] 95.0 - -
Zhou et al. [48] - - 82.4
Roth et al. [35] 95.2 92.8 82.2

indivs 91.5 74.4 42.9
no cond 14.7 21.8 18.6
cond-2nd 89.7 71.7 44.4
cond-enc 88.1 76.9 57.3
cond-dec 95.8 93.7 85.1

comes with 20,000 coarsely-annotated training images, al-
though these were not used in this experiment. We selected
three essential classes: road, car, and person. To imitate
single-class datasets, each multi-class annotation image was
converted into a set of three binary masks. We use the same
base model described in Section 3.1, but with 2D convo-
lutions and max-pooling layers, and we condition only the
decoder part of the model. In addition, to test the sensitiv-
ity of the model to cm values, the lookup table was prede-
fined with values sampled from [-20, 20]. Each image was
resized to 512⇥ 1024, and the dataset was augmented with
random left and right flips and brightness perturbations. The
model was trained for 40K iterations using a mini-batch
of 4 and a DSC-based loss function (Equation 5). The re-
sults were evaluated in terms of class-wise intersection over
union (IoU) metric for test images upsampled to the orig-
inal resolution and are presented in Table 2. Examples of
the results are illustrated in Fig. 5. Our model achieves per-
formance close to the state-of-the-art solutions [2, 3, 47] on
some classes, without pre-training or post-processing steps,
and using only finely-annotated data. While updating the
state-of-the-art on this dataset was not our goal in this ex-
periment, given that it is a multi-class dataset, we believe
that pre-training the base model on datasets, such as Synthia
[33], and using additional annotated data, can improve the

Ground truthOriginal image Predictions

Figure 5: Examples of segmentation results for the
Cityscapes validation set.

Table 2: The comparison of segmentation accuracy (per
class IoU, %) on Cityscapes test set for different classes
(higher is better).

Model Road Car Person

Chen et al. [2] 98.7 96.5 88.2
Chen et al. [3] 98.6 96.3 87.6
Zhao et al. [47] 98.7 96.2 86.8

cond-dec 96.4 91.0 76.2

performance of our method on this dataset, as was shown in
other works [2, 3, 36, 47].

5. Discussion
In this paper, we described a framework for learning

multi-class segmentations from single-class datasets by a
novel way of conditioning a convnet for the purpose of
multi-class segmentation. We performed an extensive ex-
perimental evaluation of the various ways of conditioning
the model and found that providing each layer in the de-
coder a direct access to the conditional information yields
the most accurate segmentation results. The proposed
framework was evaluated on the task of segmentation of
medical images, where the problem of single-class datasets
naturally arises. While being significantly more computa-
tionally efficient, the method outperforms current state-of-
the-art solutions, which were specifically tailored for each
single-class dataset. Additionally, we demonstrated the ap-
plicability of our method to the semantic segmentation of
natural images using the Cityscapes dataset.

While our work has been validated using radiological CT
scans and natural images of urban scenes, our idea can be
easily expanded to other applications in various domains.
In particular, one can imagine how our framework can be
applied for the detection of cancer metastases in pathology
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Figure 6: Examples of segmentation results for CT images from different datasets generated by the cond-dec model. The
results are presented in 2D for illustrative purposes, but actual results are 3D. Rows from top to bottom: Sliver07 [15], NIH
Pancreas [16], our own additional dataset of liver and spleen segmentations. From left to right: available ground truth outlines
in the datasets (green and yellow), and segmentation results conditioned on each cm 2 C = {liver, spleen, pancreas},
which are outlined in purple. Although the segmentation outlines for our additional dataset are shown together (green and
yellow), they were generated and stored separately in a form of binary masks.

images. Pathology datasets show similar fragmentation –
a unified database of pathology images of various biologi-
cal tissues, such as brain or breast, currently does not exist
and research focuses on separate subproblems. Similarly
to our experiments, a convnet can be conditioned on the
target type of metastasized cancel cells in different tissue
samples. Moreover, one can also imagine similar applica-
tions of conditioning a convnet for the purpose of instance-
level segmentation, where each instance can be conditioned
on certain attributes, such as size, color, etc, or something
more sophisticated, such as species or kind. Furthermore,
Rebuffi et al. [31] have described a method of learning data
representations in multiple visual domains for the purpose
of classification. Our framework can augment such works
for the purpose of segmentation.

Our future work will focus on expanding the problem
and incorporating images from different domains. Particu-
larly for radiological images, it will be interesting to see if

a model trained on a mixture of CT and MRI images will
be able to infer and transfer classes marked in one imaging
modality to another.
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Base model
Below are the details on the architecture of the base

model.

Input
Conv 2
DenseBlock 16x3 + MaxPooling
DenseBlock 32x3 + MaxPooling
DenseBlock 64x3 + MaxPooling
DenseBlock 128x3 + MaxPooling
DenseBlock 256x3 + MaxPooling
DenseBlock 512x3 + MaxPooling
TransConv 512 + DenseBlock 256x3
TransConv 256 + DenseBlock 128x3
TransConv 128 + DenseBlock 64x3
TransConv 64 + DenseBlock 32x3
TransConv 32 + DenseBlock 16x3
TransConv 16 + DenseBlock 8x3

Conv 32
Conv 1

Output

En
co

de
r

De
co

de
r

Table 1. Architecture details of the base model. We uti-

lize 2D or 3D convolutional and transposed convolutional

(TransConv) layers, depending on the experiment. Each

DenseBlock X ⇥N contained N densely connected con-

volutional layers with X filters each.

References
[1] Tobias Heimann, Bram Van Ginneken, Martin A Styner, Yu-

lia Arzhaeva, Volker Aurich, Christian Bauer, Andreas Beck,

Christoph Becker, Reinhard Beichel, György Bekes, et al.

Comparison and evaluation of methods for liver segmentation

from CT datasets. IEEE Transactions on Medical Imaging,

28(8):1251–1265, 2009.

[2] Roth Holger, Farag Amal, Turkbey Evrim, Lu Le, Liu Jiamin,

and Summers Ronald. Data from pancreas – CT. Cancer
Imaging Archive, 2016.



Ground Truth Liver Spleen Pancreas

Figure 1: Examples of segmentation predictions for CT images from different testing sets generated by the no cond model.

The results are presented in 2D for illustrative purposes, but actual results are in 3D. Rows from top to bottom: Sliver07 [1],

NIH Pancreas [2], our own additional dataset of liver and spleen segmentations. From left to right: available ground truth

outlines in the datasets (green and yellow), segmentation results from each additional channel. Although the segmentation

outlines for our additional dataset are shown together (green and yellow), they were generated and stored separately in a form

of binary masks.


