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Abstract— We present a novel visualization framework, AnaFe, targeted at observing changes in the spleen over time through multiple
image-derived features. Accurate monitoring of progressive changes is crucial for diseases that result in enlargement of the organ. Our
system is comprised of multiple linked views combining visualization of temporal 3D organ data, related measurements, and features.
Thus it enables the observation of progression and allows for simultaneous comparison within and between the subjects. AnaFe offers
insights into the overall distribution of robustly extracted and reproducible quantitative imaging features and their changes within the
population, and also enables detailed analysis of individual cases. It performs similarity comparison of temporal series of one subject
to all other series in both sick and healthy groups. We demonstrate our system through two use case scenarios on a population of 189
spleen datasets from 68 subjects with various conditions observed over time.
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1 INTRODUCTION

The spleen, the largest organ in the lymphatic system, is often forgotten
by laypeople but is of significant importance to clinicians. An increase
in splenic size, splenomegaly, accompanies immune response in a wide
range of abnormal conditions, including immunologic, hematopoietic,
infectious, and storage diseases [2,36]. The evaluation, staging and
response assessment of Hodgkin and Non-Hodgkin Lymphoma incor-
porate the spleen in the diagnostic process and it underlines a lack of
consensus on standard splenic metrics [9,39]. Additionally, spleens
vary in shape and size across the patients, further complicating the task
of finding a suitable evaluation criteria.

Such variation is common among many medical sub-domains. Most
medical research studies which focus on the analysis of time-varying
imaging data are faced with this obstacle. The goal of these studies is
to determine universally applicable metrics for use in clinical practice.
However, the process of finding even an initial set of candidate metrics
requires a comparison of volumetric imaging data across patients and
studies over the time of disease progression.

Diseases that affect the spleen pose particular challenges since they
lack the clear-cut characterization between healthy and unhealthy sub-
jects, which is often found in other organs (e.g. kidney). Specifically:

* Splenic maladies can manifest as variations in both shape and size.
Thus, domain experts who are characterizing such abnormalities
often find it difficult to do so based on a single metric.

Traditionally, splenic disease has been determined on simple
measurements (width/length) or volumetric estimates. These
metrics often fail to characterize disease, since unhealthy spleens
can fall within normal ranges. Consequently, it is important to
consider other parameters, such as shape.

Groups of patients can exhibit patterns of disease progression
(e.g. changes in organ volume, shape, or other features) over
time, which are of value in identifying the efficacy of treatment
regimens and the accuracy of certain measurements for character-
ization.
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Since these challenges are based on the interplay of multi-dimensional,
time-varying data, across populations, we feel that a visual analytics
approach has the potential to support medical analysis of the problem
domain of splenic disease.

In this paper, we propose a visual analytics tool, AnaFe, for the
analysis of changes in the organ based on imaging-derived features.
The current quality of image acquisition and analysis allows for the
extraction of reproducible quantitative imaging features. We take ad-
vantage of such features derived from the field of radiomics [31] to
enable an open-ended similarity search and trend exploration in splenic
imaging data. Such features have several benefits: simplicity in deriva-
tion, mapping to visualization, and most importantly reproducibility
and versatility across imaging types and domains.

AnaFe supports a similarity search and comparison workflow based
on a set of robust radiomics features. Our proposed workflow enables a
user to construct custom similarity-based queries through interaction
with these features. Through a number of visual queries and a rapid
visual feedback, the user is able to compare several time-variant imag-
ing sets and their correlating features in a single overview. Driven by
demands of medical research analysis, AnaFe combines a set of linked
visualization views. Thus, researchers can concentrate on exploring
and characterizing changes in data and corresponding features.

The utility of our tool is demonstrated through two case studies
conducted by our collaborating radiologist on a set of 189 datasets. We
begin this paper with an overview of background on the spleen and
other medical visual analytics systems. Based on the target application
domain we outline a set of visualization requirements for our visual
analytics system and describe the resulting design decisions. Then, we
illustrate the implementation of our tool and focus on the integration
of various feature types and their mapping to visualization views. Sec-
tion 5 is dedicated to application use-case scenarios. We conclude by
offering directions for future work.

2 BACKGROUND IN APPLICATION AREA

The simplicity of existing comparison methods drives the need for
visual exploration. Together with our collaborating radiologists, we
assessed existing issues and defined the requirements for our system.

2.1 Splenic Measurements and Comparison

Quantitative measurements of the spleen are often based solely on the
organ craniocaudal length (L), marked by the first and last axial slices of
the organ in the scan, or on the linear regression of the product of width
(W), thickness (T), and length (L), called the splenic-index [3, 14,35].
This metric provides a very rough volume estimation of a complex
shape and does not generalize well to new populations. Additional
inconsistency in volume estimation originates from the selecting of



Fig. 1. Measurements of (a) the spleen’s width and thickness taken
on (b) the slice with maximal axial width and (c) the slice selected by
an expert radiologist. In this case, the splenic volume is calculated as
368.6 and 281.2 mL for the automatic for prolate ellipsoid [47] and Rezai
[35] methods and 632.6 and 462.6 mL for the observer measurement,
respectively, whereas the true volume is 381.3 mL. Selection of the slice
varies significantly between observers and different heuristics. As shown
here, simple measurements do not capture the shape of the organ,
resulting in a large error.
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Fig. 2. Bland-Altman plot of agreement between the true volumes of
our data and the prolate ellipsoid volume estimates illustrates a large
error for large organs. CCC is moderate: r=0.9125 (95% CI1 0.81 - 0.93),
mean=77.3 + 142.64). The plot shows that the estimation method does
not perform well for large spleens of sick subjects, which are those that
require monitoring of changes.

the axial slice for measurement. Figure 1 shows an example where
a poor choice of the axial slice can result in a large estimation error.
We have compared volume estimation methods and heuristics of slice
selection on time-varying data [17]. Even when optimally selecting the
slice, volume estimation alone does not capture complex changes in
the organ. Primarily, there are two main issues (IS):

IS1 New volume estimation methods compare the concordance cor-
relation coefficient (CCC) to the gold standard (ground truth
segmentation). Figure 2 shows these results for prolate ellipsoid
volume estimation [47] on our set of 189 scans. CCC (adjusted for
repeated measurements [7]) describes the result as moderate corre-
lation. However, the Bland-Altman plot indicates a large number
of outliers outside the limits of agreement. Further inspection and
comparison of organ variation is required.

IS2 To the best of our knowledge, there are no studies performing
evaluation on multi-timepoint spleen data. Evaluating similarity
in disease progression and outcomes requires more points/features
of comparison due to large organ variation. Changes in imaging-
derived features, other than volume, length, width, and thickness,

have not been previously considered.
These issues stress the need to explore the variations among spleens
and find features characterizing progressive change in a diseased organ.
2.2 Spleen Variational Anatomy and Clinical Significance

Large differences between spleens among different subjects make their
comparison a challenging task. Splenic size varies with age, race, and

gender [19,26]. The size can change in response to trauma or temporary
variation in splenic vascularization (splenic vein hypertension) [27].
The spleen shape forms during development in relation to neighboring
structures and can vary from a slightly curved wedge to a “domed”
tetrahedron. Variational anatomy of the spleen is imperative knowledge
for surgical interventions, including splenectomy, resection of tumors,
and extirpation of cysts [27]. Next, we outline processes where changes
in the organ over time carries clinical significance.

Assessment of Splenomegaly. O’Reilly et al. [30] have studied
2,505 cases of splenomegaly accompanying lymphoma, AIDS, splenic
cysts, and splanchnic vein obstruction. They found that progressive
splenic enlargement demands diagnostic study because these patients
usually have a hematologic cancer.

Observation of Lymphoma and Leukemia. In clinical trials of
lymphoma and leukemia patients, the variation in spleen size is consid-
ered when determining if the patient is responding to treatment or if the
disease is advancing. In non-Hodgkin’s lymphoma, radioimmunother-
apy treatment [39] has shown to be more successful when a decrease
in splenic volume occurs in subjects suffering from splenomegaly, and
a 15% decrease in this metric is considered substantial. There is an
increasing interest in the use of more features describing progressive
splenic enlargement and shrinking due to complex changes in the organ.

Liver Cirrhosis. Correlation of splenomegaly and Child-Pugh
scores suggests significance of splenomegaly in the staging of liver
cirrhosis [8]. The volume ratio of liver to spleen assessed with CT
is significantly lower in patients who developed primary biliary cir-
rhosis (PBC) [29]. Hence, it could be an indicator for predicting the
development of symptoms and prognostic outcomes.

Observation of progressive changes in the spleen is imperative in
clinical trials and medical research studies aiming to improve patient
prognosis and care. Variational anatomy can’t be described by existing
simple measurements. AnaFe fills in this gap by allowing hypothesis-
free exploration of imaging-derived features, allowing the user to gain
insights on changes with a purpose of further statistical evaluation.

2.3 Visual Analysis Requirements

Through close collaboration with expert radiologists, and based on the
outlined issues, we have identified the following challenges:

RQ1 Observation of progressive changes in the spleen over time and
their comparison to standard measurements. What are the actual
changes happening to the organ when its volume decreases [30]
(IS2)? An improved understanding of changes based on multiple
features could help answer the question of whether a single 1D [3]
or “splenic index” based measurement can describe the change.

RQ2 Similarity of changes across subjects. How do measurements and
other imaging features compare across subjects in both sick and
healthy populations (IS1)? Observation of per subject trends of
disease progression and response to treatment is imperative for
better treatment planning and patient monitoring, thus, it should

not be limited to basic measurements.

RQ3 Overview of organ variation in the population. Given the large
organ variation in terms of shape and size [27] (IS1), a visualiza-
tion of organ variation can help in anatomical understanding for
surgical planning and can also be used for education purposes.
Geraghty et al. [14] compare the need for such an overview in the
form of spleen studies to the studies and databases of osteoporosis.
In these studies, availability of large normative databases led to

standardization of bone mineral density (BMD) measurement.

RQ4 User-driven feature exploration. Imaging-derived features have
allowed for comprehensive comparison in radiomics studies of
liver, ovarian, and lung cancers [31]. While widely used, these
features have been selected based only on quantitative methods
[10]. We are using a combination of visual analytics of a largely

forgotten organ through highly interactive exploration.

The visual analysis process in AnaFe is structured in a way which
satisfies these requirements.



3 RELATED WORK IN VISUAL ANALYTICS DOMAIN

The majority of related works have addressed the visualization and
exploration of several types of medical information: heterogeneous
data from cohort studies (including temporal information), data from
electronic health records (EHR), and visual analysis of physical and
feature spaces for medical data. Our work combines the analysis
of image and non-image data, but focuses on user interactions with
imaging-derived features that change over time.

3.1 Interactive Visual Analysis of Heterogeneous Data

Recent visual analytics research focuses on the creation of highly
interactive tools [21,44] and data organization solutions [1,40]. The
power of such tools is in hypothesis-free [40,44] exploration that allows
domain experts to iterate over multiple data variables. Thus, researchers
do not need to rely solely on intuition and observations from clinical
practice, but can get a visual summary of multiple parameters at once.

Steenwijk et al. [40] have proposed a conceptual framework for
heterogeneous temporal patient data organization analysis. This frame-
work defines domains, features, mappings, and studies, and combines
them into a relational database. The data-cube model [1] for cohort
studies handles partially overlapping data subsets and provides higher
computation efficiency in comparison to a relational database. While
the proposed model accounts for the aggregation of multi-timepoint
data (included in the study), there are no visualizations presented that
allow direct comparison over the course of time. Their visual linking
of spatial and non-spatial views is limited to viewing a single set in
a 3D view at a time. Our work focuses on aligning temporal subject
sequences based on imaging-derived features and allows simultaneous
viewing of multiple 3D sets. Klemm et al. [21] have introduced an
interactive visual analysis (IVA) workflow for epidemiological cohort
studies targeted at domain experts. Their work supports the definition
of demographics subgroups, among subjects with lower back pain,
driven by spine shape clustering features. The mean representative 3D
spine shape is visualized over a familiar information visualization with
statistical information.

Keefe ez al. [20] have highlighted the importance of combining a 3D
data overview and 2D information visualization for muti-dimensional
data analysis. They take advantage of an overview visualization of 3D
small multiples of pig mandibles and related chewing traces. We find
their overview display particularly helpful for rapid visual pinpoint-
ing of differences when compared to single [1] or mean shapes [21].
For our application, small multiples overview of temporal spleen data
substitutes for traditional sequential analysis. Highly interactive visual
analytics tools for cohort studies are particularly powerful with the ad-
dition of descriptive statistics of multiple data dimensions [44]. In this
form they enable dual analysis for hypothesis generation. In our work
we focus on a combination of imaging-derived features and physical
objects to enable a rapid comparison of disease progression.

3.2 Visual Analytics of Physical and Feature Space

Researches have combined the visualization of physical and feature
spaces for medical data. Feature space may be defined as measure-
ments taken by clinicians or features derived from imaging data. For
example, WEAVE [16] combines the visualization of measurements
and an anatomical representation for cardiac simulation. Raicu [33]
has summarized mining knowledge from medical imaging data based
on features derived from CT. He pays particular attention to tissue clas-
sification, which includes classification of spleen tissues with lowest
sensitivity and precision values due to its similar attenuation to liver.
The feature space can further be divided into higher level representa-
tions, for example models of shape, or lower level representations per
voxel. Per-voxel features are explored in works by Fang ez al. [12] and
Blass et al. [4]. Per-voxel features enable the creation of time activity
curves (TAC) which are important in the areas of nuclear medicine [12].
Tightly coupled views of per-voxel feature projections enable pattern
finding and interactive segmentation from multi-dimensional data [4].
In the same domain, Raidou et al. [34] proposes visual analysis of
tumor characterization based on dimensionality reduction techniques.
Higher level representations allow for the exploration of larger col-
lections of data. For example, shape variation can be explored through

visualization of a given 3D shape within a projected shape space [5].
Busking et al. [5] introduce a framework comprised of three views. It
supports the exploration of shapes over a population and individual
shape progression. Statistical deformation models (SDM) (Hermann et
al. [18]) are used to study anatomical shape covariation interactively.
Caban et al. [6] give an overview on visualization of SDM.

For the purpose of our work we wish to avoid the complexities and
clutter of per-voxel features, and not favor a particular feature type such
as shape. Specifically for the spleen, shape varies significantly from
subject to subject and is defined during development. Detailed features
of spleen shape such as notches and lobules are of interest to clinicians.
While the intra-subject variation in splenic shape is largely considered
normal, the actual distribution of types of shapes is not well studied
and is becoming of interest to medical researchers. In our work, we use
robust and reproducible imaging features from the field of radiomics
[10,31]. The goal of radiomics is to obtain high quality, reproducible
imaging features in order to provide improved information for patient
management. These features represent quantitative information about
statistical intensity, texture, and shape. But most importantly, they
provide information about imaging data in a concise form. Parmar et
al. [31] outline related examples of using quantitative imaging features
in liver, ovarian, and lung cancers.

3.3

Multi-subject visualization of temporal data necessitates the organiza-
tion of a wide range of information (5 W’s [48]), allows one to focus on
patterns and specific scenarios of events in the emergency room during
patient intake [11,28], and finds differences and similarities in tem-
poral patient data (CoCo [25]). Finding similarities in patient cohorts
is addressed in: LifeFlow [46], CareFlow [32], DecisionFlow [15],
and OutFlow [45]. Not only analysis, but also construction of the
cohort is a challenging question when dealing with large amounts of
information [22]. It is important to emphasize that while these works
focus on visualization of similarities and differences in temporal patient
histories, they do not include analysis of imaging-derived features.

Interactive Visual Analysis of Temporal Patient Data

4 SYSTEM DESIGN AND IMPLEMENTATION

AnaFe is a framework for analytical exploration of 3D organ data and
associated medical-imaging derived features. We focus on parts (c)-(f)
in Figure 3: deriving the imaging features and their visual analysis in
combination with non-image features from the study data.

4.1

Our application consumes several types of data that stems from the
medical research study of spleen variation. Each study is comprised of
multiple subjects observed over several visits.

Subject Information. Each study contains information with respect
to gender, age, and disease status of the subject (sick or healthy).

Imaging-derived Features. Feature vectors for each study are de-
rived from the original DICOM data after applying segmentation masks.
We describe these features in detail in Section 4.2. The effect of seg-
mentation on quantifiable radiomics features has been previously eval-
uated [31]. For the purpose of unbiased evaluation we used features
derived only from manually segmented data.

3D Surface Mesh Pre-processing. AnaFe requires a 3D mesh for
each organ for rendering, which is obtained in two steps.

Mesh generation. From the manually segmented data we derive a
3D surface mesh of the organ via marching cubes [24]. The surface
geometry is then post-processed with Taubin smoothing [41].

Mesh registration. For comparison of several organs’ surfaces, we
align the meshes using the Iterative Closest Point (ICP) algorithm [23].
Next, meshes are registered using non-rigid ICP to obtain correspon-
dences between the vertices of consecutive timepoint meshes. This
type of registration has not been previously used for the spleen. We
have selected these methods based on the preliminary evaluation of
their performance and ready availability.

Thus, any study of a group of subjects with a series of repeated
measurements (dependent variables) over time (independent variable),
that contains similar information can be analyzed by AnaFe.

Input Data
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Fig. 3. An overview of the steps required for temporal feature analysis by AnafFe. The data is sourced from follow-up CT scans (a) that have been
segmented (b). In this work, we first derive robust image features from the field of radiomics (c): texture, shape, intensity, and measurements. These
features, along with other study information (non-image features), are used by our web-based application AnaFe. After selection of the current
subject (d), the application performs a search for subjects with similar progression. Search results filtering is performed by brushing a selection over
the distribution charts (f) of average features and average change in progression (interchangeable views shown with a double yellow arrow.)

4.2 Feature Types

In clinical practice determining the spleen size and response to treat-
ment is often a qualitative rather than quantitative process. For the
purpose of quantitative comparison of inter-subject similarity of organ
change along with basic measurements, we integrate a set of imaging-
derived features. With our application and other potential domains in
mind, we group these features into the following four categories:

* Measurements. In practice, volume, craniocaudal length, width,
and thickness serve as primary comparisons for spleens. There-
fore, we define them as a separate category. For many other appli-
cations, measurements can be defined as descriptors of shape.

* Shape. Shape descriptors characterize spleen shapes, which in-
clude elliptical, triangular, wedge, and tetrahedron [36].

e Intensity. In CT scans, the spleen is often described as an organ
of homogeneous density [36]. Thus, intensity is not extremely
important for this application. We include this feature group for
the purpose of extensibility to other domains.

o Texture. Texture features are based primarily on a gray-level
co-occurrence matrix (GLCM). Such features describe cluster
prominence and can be used for tumor characterization. Similar
to intensity, this feature is included for extensibility.

The detailed definitions of these features can be found in the related
literature [31]. In addition, we provide information on the features used
in our case studies in Appendix A. These imaging-derived features,
along with study information (gender, age, and disease status), comprise
the full feature vector for each dataset.

4.3 Similarity Comparison

Comparing changes across subjects (RQ2) requires analyzing data
from multiple timepoints. The number of visits varies from subject to
subject based on the condition and progression of the disease. It was
noted by our medical collaborators that the time difference between
the two consecutive patient visits is not of essence for this comparison.
Varying duration of treatment and the subject’s initial conditions can
affect the quantitative difference in the measurement/features. These
compounding variables about the subject’s original state were not avail-
able during the current study. Regardless of the velocity of change in
the organ’s condition, it must be detected. The focus of our study is
visual identification and correlation of predictors of change among the
large number of features (measurements and imaging-based) for future
analysis and statistical testing.

We obtain a vector of imaging-derived features for each subject’s
visit. For similarity computation purposes, these features are normal-
ized to the [0, 1] range based on maximum and minimum values. The

original value of each feature is stored for display purposes (in labels
and tooltips). Thus, each subject is described by several feature vectors
over multiple visits. Similarity comparison between two studies is per-
formed by computation of two measures: cosine similarity of feature
vectors and dynamic time warping (DTW) of time-series.

Cosine similarity is defined as the similarity between two feature
vectors for a given timepoint. Specifically, it is an angle between two
feature vectors. In our application, we use a special case of weighted
cosine similarity. Initial feature weights are assigned to be equal and can
be changed by the user in the process of similarity-query construction
as described in Section 4.5. Based on the weight, some features can be
fully excluded from the comparison. For example, texture and intensity
of the spleen can be described as homogeneous, and thus the user can
fully exclude such features if not found to be meaningful.

Time-series similarity is defined by the DTW distance measure
[37,38] algorithm with the above described cosine similarity as a
distance cost at each point. DTW distance can be determined for
sequences of unequal lengths and does not account for the difference
in time between two points, which satisfies our requirements. As we
have mentioned earlier, in the series of subject’s scans the difference
between two timepoints can be ignored. For the datasets where this
assumption does not hold, two possible variations can be considered. In
a simple case of evenly spaced events, Euclidean distance between time
series with modification for missing data can be used. For irregular
time series, variations of DTW or model-based search methods can be
used. Additionally, DTW has been previously applied to the analysis
of medical data with incomplete series [42].

AnaFe performs a similarity comparison of the selected multi-
timepoint study to all other studies loaded in the system. The results of
the similarity search update two synchronized views.

4.4 Visualization Design

AnaFe implements our collaborators’ requirements through a number
of highly interactive linked views described in this section:

* Demographics Overview (DO) - an overview of basic demo-
graphic information (age, gender, and disease types).

e 3D Small Multiples Objects over Time (SMO) - an overview
visualization of the organ progression via 3D small multiples that
simplifies direct comparison of the organs as per RQ2 and RQ3.

o Feature Distribution Overview (FDO) - a visualization of several
groups of quantitative imaging features via familiar information
visualization plots with interactive capabilities as per RQ4.

* 3D Object Detail (OD) - a detailed progression view of 3D organ
mesh shapes highlighting the changes between timepoints as an
expansion to RQ1.
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Fig. 4. An application layout showing locations of all views, as described
in Section 4.4. The arrow indicates interchangeable views.

* Measurement Progression over Time (MPT) - an overall progres-
sion trend for the patient based on measurement metrics (volume,
length, width, and thickness) (RQ1).

* Feature Progression over Time (FPT) - a heatmap-style visualiza-
tion of feature progression over time (RQ4).

The layout of the application (Figure 4) is broken down into four
main views and two control panels (main and feature selection). From
the main control panel, the user can select a multi-subject study to be
loaded from the back-end. The DO, SMO, FDO, and MPT views will
be populated based on the number of subjects and the computed feature
distributions as described in Section 4.4.5. The OD and FPT views
alternate based on the user’s selection in the control panel. MPT, SMO,
and FPT (if selected) comprise a single table/list style scrollable view.
The implemented capability of “virtual” scrolling allows for rendering
of only currently visible items. This implementation alleviates the
bottleneck of simultaneously handling multiple WebGL canvases and
contexts for 3D small multiples rendering.

The selected study is displayed at the top of the table list and high-
lighted accordingly. The similarity comparison is performed based
on the user defined query through filtering options in the FDO. We
describe each of the views below.

4.41

The demographics overview consists of a bar chart visualization show-
ing the distribution of gender, age, and disease status (sick or healthy) in
the population. Spleen volumetry studies analyze the distribution of the
organ’s volume and other measurements (length, width, thickness) in
the population for different demographic groups Through interactions
with this view, the user can filter which sets are shown and analyzed.
By clicking on the column in the bar chart (or by brushing a selection
over a range of columns), the user can select a category or a range of
values. For example, only sick patients in the age group of 40-80 can
be selected for analysis.

Demographics Overview (DO)

4.4.2 Measurement Progression over Time (MPT)

In clinical practice, the response to treatment or disease progression
for the spleen is evaluated quantitatively based on length or volume
of the organ [9,35]. Similarly, in many applications, tumor growth is
measured by a single diameter or volume. The progression trend (MPT
view) should show an overall increase or decrease in this metric over a
series of the subject’s follow-up visits.

This view is implemented as a scatterplot (Figure 5) that shows the
trajectory of the measurement for a given subject at each period of
time (color filled markers). The dashed line connects two consecutive
measurements into the progression trend per subject. In order to enable
fast comparison of the trend of one subject with respect to others, this
chart shows distribution of measurements across the population (grey
empty markers). All measurements of one subject are highlighted on
mouse interaction, thus providing trajectories for comparison.

Volume change over four visits
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Fig. 5. An example scatterplot of Measurement Progression over Time
(MPT). Red markers show measurements for a given subject (#11)
at each follow-up visit. The dashed line connects the measurements
showing the progression trend for this given subject. Grey markers show
measurements within the population at each visit.
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Fig. 6. An example of the OD view showing two spleens rigidly aligned.
Small black arrows indicate the direction of change and are obtained
from the result of non-rigid registration.

As previously discussed [17], there is a lack of consensus on which
measurements are used to compare disease progression. This panel
allows the user to define a trend metric, e.g. splenic volume, and
visually compare the change to the SMO and the OD views with the
3D rendering of the organ. Evaluating and understanding the manner
in which spleens change in size, for example shrink faster in length or
in width, can characterize a disease progression or treatment. In this
way, an abnormal spleen can be characterized even when it falls within
the normal range for splenic size.

4.4.3 3D Small Multiples Objects over Time (SMO)

In a traditional clinical setting, only a few imaging results can be
rendered simultaneously side-by-side. In such a scenario, the user
can compare the change only for a single patient. To compare organ
change among several subjects, we employ Tufte’s principle of small
multiples [43]. Keefe ef al. [20] have used a similar approach for the
visualization of 3D pig mandibles.

In our 3D small multiple views, the organ model is shown sequen-
tially for each timepoint. It allows the user to quickly compare multiple
organ models between several subjects (Figure 9 (1)). The time-series
3D object overview visualization allows individual rotation of each
model for comparison from multiple angles. Furthermore, each of the
organs can be selected with a double click for detailed investigation in
the OD.

The SMO and MPT views are positioned side-by-side in the form of
the table/list view. In this way the measurement scatterplot provides
the required trend visualization when change is not immediately visible
on the 3D object. The 3D SMO view serves as a 3D thumbnail preview
of the organ shapes. Correlating a trend metric from the MPT view
(e.g. volume, length, or width) to the actual shapes can be done without
context switching to multiple images. Thus, we combine both scientific
and information visualization for analytics purposes.
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Fig. 7. An example of linking via brushing support between “volume,’
“length,” and “convexity” in the FDO view. By brushing in the “volume”
chart visualization, the user can compare how selected subjects are
distributed in other charts. Subjects and timepoints outside the selected
range are removed from the similarity comparison (row). If the feature
is fully deselected via the checkbox, the respective column in the FPT
heatmap is dimmed out.

4.4.4 3D Object Detail (OD)

Traditionally, organ progression observation and analysis is limited
to statistical 1D measurements. Further investigation of 1D measure-
ments and correlated spatial changes requires manual browsing through
2D slices of DICOM data for each dataset. Our collaborators have
noted that this comparison demands substantial context-switching be-
tween several applications (statistical packages, DICOM viewers, etc.),
incurring a significant time and effort overhead.

AnaFe renders the 3D surface mesh of the organ, thus enabling close
investigation of local changes in the organ. Based on rigid alignment
(ICP), organs from consecutive timepoints are aligned. Non-rigid regis-
tration (non-rigid ICP) provides point-by-point correspondences to ren-
der arrow glyphs. This type of representation can show the direction of
the greatest change in the spleen (Figure 6). From the semi-transparent
rendering view the user can see whether the decrease was uniform in
all dimensions or whether one dimension increased/decreased more
rapidly. In many organs, a disease is defined in terms of distortion of
their shape. Diseases that uniformly enlarge the organ without shape
changes tend to fall into one group, while diseases that fundamentally
change the shape tend to belong to another category. For the spleen,
this view helps the user to understand whether the change is uniform or
irregular.

4.4.5 Feature Distribution Overview (FDO)

Histograms are common to visualize density distribution in the data.
Feature visualization of multi-timepoint data should provide an under-
standing of distribution of average feature values and relative changes
for each subject. The number of histogram bins and their size have to be
chosen carefully to depict the overall density. While a basic histogram
can provide an answer with respect to the overall distribution of values,
it does not identify individual entities that contribute to each bin.
With the above ideas in mind, we construct a custom feature his-
togram view (Figure 8) that shows individual entity contributions. In
our histogram the bin width is computed based on the Freedman-
Diaconis rule [13]. For a dataset of 68 subjects, this resulted in up
to 20-40 values per each bin for a given feature. The relatively small
bin size allows us to display each entity individually as a rectangle of
the respective width, and with a height computed based on the chart
dimensions. The chart’s width and height are equal for all feature types
and are computed by the application based on the screen size. In our
feature histogram, rectangles BB can be colored using one of the
color schemes: individually for each subject, disease status (healthy
- @, sick - B ), gender (male - EEE, female - EEE ), or
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Fig. 8. An example of feature histogram charts for an average cranio-
caudal length of the spleen per subject, and average relative change
over time. The exact value of the feature is available in the tooltip when
hovering over a subject’s rectangle. The color scheme of the chart is
selected by the user and is applied to each feature histogram. The figure
presents 4 available color schemes: unique by subject, by gender, by
disease status, and by age.

based on age ([ to I ). AnaFe allows for color selection based
on one of these specified color schemes and switching between two
summarized types of feature distribution visualization as required. The
features can be summarized by average value per subject and average
relative change between consecutive timepoints.

The FDO view is one of the key visualization components of the
system. It provides a global overview without eliminating individual per
subject values. Globally, this view provides insight into the distribution
of features. Based on interaction (hovering over a rectangle), the user
can investigate into which range a given subject belongs for each feature
(the corresponding subject is highlighted in all views). In clinical
research, the expert can specify population groups to be included in
the similarity comparison. For instance, she might want to compare all
the “long” spleens of sick subjects that were undergoing treatment. By
brushing over the “length” FDO chart and over the “disease status” DO
chart, the population is filtered and will be used for comparison.

4.4.6 Feature Progression over Time (FPT)

FPT is a heatmap visualization of feature vectors for each subject’s visit
(Figures 7 and 9 (3)). The FPT view is not immediately visible and can
be shown on demand through selection on the control panel. The row
number of within the chart indicates the visit, and the cell is a value
of the feature at a given point in time. Cell color is determined based
on the normalized value of the feature (the data value is mapped to
interval from O to 1). The darkest red EEEE identifies the highest value
of the feature (normalized to 1) and yellow [—Jindicates lowest value
(normalized to 0). The original value can be viewed by hovering over
the cell. Through this color coding, the FPT view shows the change of
each individual feature for the subject over time in a single view. For
instance, measurements such as volume, length, width, and thickness
of the organ (shown in the first group in Figure 9) and quantitative
radiomics shape features can be surveyed in parallel across a treatment
regimen.
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Fig. 9. The result of similarity comparison for subject #19 (a): (b) based on all features; (c) measurement features only; (d) shape features only.

4.5 Visual Queries and Interaction

Our visual query interface is comprised of multiple feature distribution
histogram charts. We have identified 4 groups of imaging-derived
features. In this application we currently use up to 8 features in each
group with the possibility of adding more features in the future.

Query construction. The feature query interface allows the user to
specify three types of information required for the comparison of time-
series similarity: inclusion/exclusion of each feature, weight of feature
contribution, and range of feature interval. The user can select a feature
(include/exclude) via a checkbox in the legend in order for the feature
to be included. The feature weight can be specified via a slider located
next to each feature histogram. Feature range selection, brushing
selection over a block of the histogram, allows the user to select a range
of values for each feature. If a histogram bin is selected, all sets within
that range will be included in the similarity comparison. Mouse hover
links all feature values for a given subject on all histograms.

Query results. A similarity query compares the currently selected
study (displayed first) with every other multi-timepoint study available
in the dataset. If a value of a feature falls outside the range selected
by brushing, and leaves only a single timepoint per subject, the subject
will be compared based on that one point. After the user completes
the feature selection, she can request the similarity results. Results are
displayed in all table/list views: subject information, MPT, and SMO.

4.6

The AnaFe front-end is implemented using standards-compliant
Javascript, CSS, HTMLS, and WebGL and utilizing Bootst rap1
layouts. The core application scaffolding is driven by Angular. js?.
The visualizations are generated using three.js? and
Highcharts.js*. The core web application functionality is
implemented on top of Node.js’, with Sails.js® Data
pre-processing and derivation of all imaging features is handled in

Python utilizing scikit-image’.

Implementation

5 APPLICATION

In this section, first, we describe the data collection used. Then we
present two usage scenarios, showcasing our application in the process
of analyzing a collection of splenic imaging datasets, and obtain related
domain expert feedback. For both of the scenarios we show our system
by providing an overview of the data, allowing the user to zoom, filter,
and examine example results and details on demand. Finally, we
present an example of AnaFe’s extensibility to other organs and medical
imaging types.

Uhttp://getbootstrap.com
Zhttps://angularjs.org
3http://threejs.org
“http://www.highcharts.com
Shttps://nodejs.org/
Ohttp://sailsjs.org
http://scikit-image.org
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Fig. 10. An example of OD, SMO, and MPT views for 4 subjects. Case (b) was found to be the most similar to case (a) in the sick subject data. Both
show the same decrease in organ volume. Cases (c) and (d) were found to be most similar among healthy subjects. While the spleen (c) decreased

in volume, (d) remained almost unchanged.

5.1 Spleen Data

The data used in our study was collected retrospectively over a period
of three years. This data includes two groups of subjects: those with
no known causes of splenomegaly or diseases affecting the spleen
(healthy), and those with lymphoma or leukemia, diseases known to
affect the organ size, that were undergoing treatment (sick). Only
subjects with two or more abdominal CT scans over a three year period
were included. This study was approved by our IRB. The DICOM
image data was de-identified and stored in a secure off-line database.

A total of 33 healthy subjects with up to 3 follow-ups over the given
time period were included, resulting in 79 healthy datasets. For “sick”
subjects, we included data with up to 4 follow-up scans over the course
of treatment / disease observation, resulting in 35 subjects with a total
of 110 datasets. The data included 24 female subjects and 44 male.

For each study, manual tracing of the splenic contour was performed
on each axial slice in a blinded fashion under the supervision of a fellow-
trained attending radiologist, providing a ground truth segmentation.
This work was performed using the Alice software®. While the time
between the follow up scans varied from one week to over a year,
it was noted by our collaborators that only the difference between
measurements was important, and the time between visits was not of
high significance, as explained earlier.

5.2 Case 1: Similarity Comparison

In this section we demonstrate the similarity comparison feature for
multiple datasets and features. We focus on the usability and interactiv-
ity of the system by providing step-by-step scenarios of usage.

Data selection. First, the user should select a multi-subject study
and select a set for comparison. By default, all of the study parameters
and imaging-derived features will be included in the search. AnaFe
provides full customization of the query parameters to the user.

Visual queries. The search for similar shapes can be narrowed down
through AnaFe’s visual query interface in the FDO view. Based on the
selection of search parameters (types of measurements and features),
some timepoints will be excluded from comparison. Once the query
selection is complete, the entire time series for a particular subject is
compared to that of all other subjects. The similarity is computed in
real-time (for 189 spleens), and the result is displayed immediately in
the list/table views. Initially, the preview of temporal sets in the 3D
SMO view provides immediate feedback to the user.

Example of findings. Figure 9(a) shows an example of the four most
similar sets as compared to subject #19. First, similarity comparison
was performed using all available features (Figure 9(b)), next based on
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diameters and volume of the organ (c), and finally based only on shape
features (c). The color of the marker in the MPT scatterplot indicates
disease status of the subject (with green being healthy). In cases (c)
and (d) the system has identified healthy subjects #66, #70, #81, and
#55 as similar. In the first case, with all features selected, the system
has identified only diseased subjects. Similarity comparison in this
case did not include demographics information and was based solely
on imaging features.

Zooming-in on the result. Next, the user can select the organs by
double clicking on them for zoomed-in investigation in the 3D OD view.
Figure 10 shows rendering of temporal scans for four subjects. All
measurements (volume, width, length, thickness) were used for com-
parison query. 3D meshes of the organ are all registered sequentially.
The reviewer can inspect the direction of change. For example, for sick
subjects (a) and (b) in Figure 10, change happens in all dimensions. In
case (c), some change has occurred in the healthy subject as well. For
such a small organ volume, this change may indicate the variation in
hydration status. However, for most of the healthy subjects found in
our data, there is no change between consecutive visits.

5.3 Case 2: Interactive Feature Exploration

Radiomics uses medical imaging features for the prediction of diag-
nostic outcomes [10,31]. In the examined applications these features
provide a non-invasive way of quantifying and monitoring tumors. We
use this comprehensive quantification of imaging to find similarities
in progression of disease and response to treatment in the spleen data.
However, there haven’t been any previous attempts at visualizing these
features for detailed user examination.

Feature overview. AnaFe provides an overview of all features in the
FDO view, thus creating a second scenario for the view usability. From
this view, we can see that, as expected, the mean and standard deviation
of intensity communicate homogeneous density properties of the organ
on the CT scan. Thus, these features might not be discriminative enough
to show differences between subjects.

Feature selection. The user can unselect these features from the
similarity comparison, and the corresponding columns will be dimmed
out on the FPT heatmap (Figure 7). The user can inspect relationships
between features of different subjects by brushing the selection over
the FDO histograms.

Example of findings. As shown in Figure 7, organs with larger
volumes also have larger craniocaudal length, which is a well known re-
lationship for the spleen. However, relationships between other features
for this organ are largely unknown. AnaFe creates a unique opportunity
for the user to inspect the derived features simultaneously and select
particular ones for further statistical testing.



5.4 Extensibility to Other Domains

AnaFe was developed with the goal of exploring changes in temporal
imaging-derived features, which does not limit its application to CT
spleen data. To show extensibility of our application, we use obser-
vations of prostate cancer on Magnetic Resonance Imaging (MRI).
Prostate cancer is the most common malignancy and second most
common cause of cancer-related mortality in men. Similar to splenic
increase in size, enlargement in the prostate can be palpable and is used
in primary staging. Thus, the size of the organ is one of the useful
indicators that can be obtained from the segmented organ imaging.

We use temporal prostate data from the Prostate MR Image
Database®. Manual segmentation was available only for two data time-
points per subject, and demographics information was not available.
Additionally, no disease status was available for these subjects. The
study by domain experts is required to evaluate results of the analysis.
Figure 11 shows an example of AnaFe with prostate data.

5.5 Expert feedback

Two of our collaborating radiologists inspected the application and
its features. We have recorded their feedback and the most important
points they made about the usability of the tool.

Linking measurements and 3D data over time: MPT, SMO, and
OD views. The MPT view for craniocaudal length and volume (well
known measurements) allows the researcher to compare their trends
rapidly and gain immediate visual feedback. It becomes particularly
powerful in combination with 3D rendering of the organ sequence
(SMO). The overlay rendering of aligned mesh surfaces (3D OD view)
provides a useful picture of how the organ has changed between patient
visits. In the software that is currently used to perform medical research
on the spleen, neither registration of the organ, nor 3D rendering of
overlays are implemented. Thus, the MPT, SMO, and OD views, when
used jointly, provide the missing links for the current analytical work-
Sflow, and allow for substantial time savings when comparing multiple
organs. As a potential improvement, our collaborators indicated that
some sort of on-mesh annotation of the areas of major change in shape
or size within the 3D view would be very useful.

Feature distribution and characterization of the data: FDO
view. The FDO view was selected as the most interesting feature
due to its ability to analyze multiple shape features simultaneously.
As was noted by our collaborators, differentiation between sick and
healthy organs based on a set of features was unclear. The FDO chart
provided visualization of distribution and ranges of each feature, as
well as immediate visual feedback (based on the color of the category)
if the separation between the values based on the category exists. For
instance, individual color coding by subject has shown an already well
known correlation of the organ’s craniocaudal length and volume. That
is for spleens with a large volume, the length is also large. For some
of the shape features, differentiation between sick and healthy subjects
was very visible. Using this knowledge, and the subject’s diagnostic in-
formation (currently not available in the anonymized data), the clinician
could investigate sources of such differences, for example, the effect
of portal vein hypertension on the organ shape. This is an interesting
direction for future research: analysis of statistical significance of shape
features in predicting organ disease status, and predicting normality of
diseased organs and abnormalacy of healthy ones.

In summary, the ability to visualize a large number of datasets simul-
taneously has significantly improved over routine comparison that has
previously required context switching between different applications
and was limited to comparison of only a few parameters in static charts
(IS1). Most importantly, AnaFe has provided a unique look at multiple
snapshots of spleen data and its imaging-derived features changing over
time (IS2).

6 CONCLUSIONS AND FUTURE WORK

In this paper, we described a visual analytics framework for the explo-
ration of large collections of medical imaging datasets, with a focus on
disease progression accompanied by progressive spleen enlargement.
Through multiple linked views we allow the user (researcher or the
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Fig. 11. An example of AnaFe use with prostate data. User interaction
with the system is displayed in the average (top) and change FDO views
(bottom). Hovering the mouse over the marker (subject #73) in the MPT
view (a) links to all features for this subject in the FDO view. Selected
subjects in the view (c) are highlighted across all FDO charts. Not
selected subjects (b) are dimmed out in the FPT view.

radiologist) to interactively explore multiple imaging-derived features.
Meanwhile, a 3D mesh view allows the user to examine changes in
the organ more closely and see the relation of the traditionally used
1D parameters to the full organ view. Currently, our application sup-
ports the set of most common robust and reproducible imaging features.
These features describe organ intensity, shape, texture, and measure-
ments. Our application allows for observation of trends over time to
determine similarity in disease progression and outcomes. We have
currently explored only a limited set of radiomics features, and were
already able to find their usability for the spleen. It is also in our interest
to pursue a time-dependent comparison in the future with additional
parameters from other tests considered (beyond CT imaging), which
requires acquisition of more data and additional IRB approval.
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